If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7k2 + 20k + -12 = 0 Reorder the terms: -12 + 20k + 7k2 = 0 Solving -12 + 20k + 7k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -1.714285714 + 2.857142857k + k2 = 0 Move the constant term to the right: Add '1.714285714' to each side of the equation. -1.714285714 + 2.857142857k + 1.714285714 + k2 = 0 + 1.714285714 Reorder the terms: -1.714285714 + 1.714285714 + 2.857142857k + k2 = 0 + 1.714285714 Combine like terms: -1.714285714 + 1.714285714 = 0.000000000 0.000000000 + 2.857142857k + k2 = 0 + 1.714285714 2.857142857k + k2 = 0 + 1.714285714 Combine like terms: 0 + 1.714285714 = 1.714285714 2.857142857k + k2 = 1.714285714 The k term is 2.857142857k. Take half its coefficient (1.428571429). Square it (2.040816328) and add it to both sides. Add '2.040816328' to each side of the equation. 2.857142857k + 2.040816328 + k2 = 1.714285714 + 2.040816328 Reorder the terms: 2.040816328 + 2.857142857k + k2 = 1.714285714 + 2.040816328 Combine like terms: 1.714285714 + 2.040816328 = 3.755102042 2.040816328 + 2.857142857k + k2 = 3.755102042 Factor a perfect square on the left side: (k + 1.428571429)(k + 1.428571429) = 3.755102042 Calculate the square root of the right side: 1.937808567 Break this problem into two subproblems by setting (k + 1.428571429) equal to 1.937808567 and -1.937808567.Subproblem 1
k + 1.428571429 = 1.937808567 Simplifying k + 1.428571429 = 1.937808567 Reorder the terms: 1.428571429 + k = 1.937808567 Solving 1.428571429 + k = 1.937808567 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1.428571429' to each side of the equation. 1.428571429 + -1.428571429 + k = 1.937808567 + -1.428571429 Combine like terms: 1.428571429 + -1.428571429 = 0.000000000 0.000000000 + k = 1.937808567 + -1.428571429 k = 1.937808567 + -1.428571429 Combine like terms: 1.937808567 + -1.428571429 = 0.509237138 k = 0.509237138 Simplifying k = 0.509237138Subproblem 2
k + 1.428571429 = -1.937808567 Simplifying k + 1.428571429 = -1.937808567 Reorder the terms: 1.428571429 + k = -1.937808567 Solving 1.428571429 + k = -1.937808567 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1.428571429' to each side of the equation. 1.428571429 + -1.428571429 + k = -1.937808567 + -1.428571429 Combine like terms: 1.428571429 + -1.428571429 = 0.000000000 0.000000000 + k = -1.937808567 + -1.428571429 k = -1.937808567 + -1.428571429 Combine like terms: -1.937808567 + -1.428571429 = -3.366379996 k = -3.366379996 Simplifying k = -3.366379996Solution
The solution to the problem is based on the solutions from the subproblems. k = {0.509237138, -3.366379996}
| 4(7+b)=-24 | | 6y+18=-6y-18 | | 2x+5x=9x | | 2x+14=2-2x | | 8-3(-2)=14 | | 3(4+3a)=75 | | 9-2a=14 | | 2(y-3)+2y=y-3 | | x^2+.25x^2=25 | | 9-4k^2=0 | | (u-5)(u+2)=0 | | p(x)=x^4-4x^2-5 | | 8x+5=4x+37 | | 2x+5=51 | | -24.74=-6.8k-2.9-1.6k | | 8y+2-6y=3+4-10 | | 9x-9=-9-9x | | 5(5-5x)=-75 | | 4y^2+y^2=25 | | 2(5/12)=-(5/4)v+(7/4)+1(1/2)v | | -128+2x=88+10x | | 17x^2+32x-4=0 | | x+2=5y+1 | | 35b^2+4b-4=0 | | 3z-1=-13 | | 16k^2=20k | | -6(1+2a)=-78 | | 8n+10= | | -17-8x=10x+15 | | 3(x+2)-x=15+7 | | (1/4)x+(5/3)+(2/3)x=(73/24) | | 7x-95=4x-14 |